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We present an approach to the estimate of the potential of mean force along a generic reaction coordinate
based on maximum likelihood methods and path-ensemble averages in systems driven far from equilibrium.
Following similar arguments, various free energy estimators can be recovered, all providing comparable com-
putational accuracy. The method, applied to the unfolding process of the �-helix form of an alanine decapep-
tide, gives results in good agreement with thermodynamic integration.
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I. INTRODUCTION

Estimate of free energy differences is useful for many
applications including protein-ligand binding affinities and
drug design as well as for theoretical perspectives. A rough
classification of the plethora of computational methods de-
vised for determining free energy differences can be based
on the possibility of sampling a system at equilibrium or out
of equilibrium. Equilibrium approaches include thermody-
namic integration �1�, free energy perturbation �2�, and um-
brella sampling techniques �3�. Representative examples of
nonequilibrium techniques are the so-called adaptive force
�4� or potential �5� bias methods. The efficiency of the latter
techniques depends crucially on how fast the history-
dependent force or potential changes in time or, in other
words, how far from equilibrium the simulation is carried
out. From this point of view, adaptive bias potential methods
would be more appropriately defined as quasiequilibrium
techniques.

In the context of nonequilibrium approaches �6,7�, a sub-
stantially different scenario has been disclosed by Jarzynski
�8� and Crooks �9�, who introduced “truly” nonequilibrium
methods for determining free energy differences. In particu-
lar they proposed two exact equations, referred here as
Jarzynski equality and Crooks nonequilibrium work theorem,
relating free energy differences between two thermodynamic
states to the external work done on the system in an en-
semble of nonequilibrium paths switching between the two
states. In a recent paper Shirts et al. �10� have demonstrated
that the Bennett acceptance ratio �11� can be interpreted, ex-
ploiting the Crooks nonequilibrium work theorem, in terms
of the maximum likelihood �ML� estimate of the free energy
difference given a set of nonequilibrium work values in the
forward and reverse directions.

One of the major shortcomings of these nonequilibrium
techniques is that free energy profile along a given reaction
coordinate, i.e., the potential of mean force �PMF�, is hardly
available. With the two sets of forward and reverse nonequi-
librium paths, Crooks nonequilibrium work theorem �9� and
ML method �10� yield only the free energy differences be-

tween the final and initial states. The Jarzynski equality, on
the other hand, can in principle be used to calculate the PMF.
However, it is well known �12–15� that the exponential av-
erage in the Jarzynski equality depends crucially on a small
fraction of realizations that transiently violate the second law
of thermodynamics. Since such “magic” realizations are very
unlikely to occur among a collection of fast rate realizations,
it is clear that the PMF cannot be determined accurately by
the direct application of the Jarzynski equality.

In the present paper we demonstrate how to recover the
PMF using ML estimators �10� and path-ensemble averages
in systems driven far from equilibrium �16�. We test the
method on the unfolding process of the �-helix form of an
alanine decapeptide through steered molecular dynamics
�MD� simulations.

II. THEORY

A. Description of the dynamical system and notation

Let us consider a system that can switch between two
states, A and B, characterized by different values of an arbi-
trary reaction coordinate �, namely �A and �B. We denote
with F �forward� any realization during which the reaction
coordinate is forced to vary from �A to �B with a prescribed
time schedule. Accordingly, we denote with R �reverse� any
realization that brings the reaction coordinate from �B to �A
with inverted time schedule. The kind of computational or
experimental technique used for producing the realizations is
not relevant. The essential requirement is that the used tech-
nique furnishes the value of the work done on the system
during the realizations. Suppose to produce a collection of nF
forward realizations and a collection of nR reverse realiza-
tions, each realization being started from microstates �i.e.,
phase space points� sampled from an equilibrium distribution
�equilibrium microstates of A for the F realizations and equi-
librium microstates of B for the R realizations�. Specifically,
an equilibrium microstate of, e.g., A is simply obtained by
sampling the system in thermal equilibrium with a bath, the
reaction coordinate being constrained to the value �A �13,17�.
Furthermore, we assume that all realizations are performed at
a very fast rate, which implies that they are carried out far
from equilibrium. As a consequence, the final microstates of*chelli@chim.unifi.it
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the F and R realizations will not be distributed according to
the equilibrium distribution of B and A, respectively. It is
evident that the same holds true for the intermediate mi-
crostates of the F and R realizations. For example, the mi-
crostates characterized by a generic value �Q of the reaction
coordinate obtained during a realization starting either from
A �F realization� or from B �R realization� will not be equi-
librium microstates of the state Q characterized by the reac-
tion coordinate �Q. This situation is schematically repre-
sented in Fig. 1. We now denote a generic ith F realization
with Fi

Ab, where the superscript Ab means that the thermo-
dynamic state corresponding to the initial microstate is A
�first letter� and that such microstate is taken from an equi-
librium ensemble of microstates �uppercase�, while the ther-
modynamic state corresponding to the final microstate is B
�second letter� and that such microstate belongs to an en-
semble of microstates out of equilibrium �lowercase�. Fol-
lowing this notation, the segments from �A to �Q and from �Q
to �B of the Fi

Ab realization are denoted as Fi
Aq and Fi

qb, such
that Fi

Ab�Fi
Aq+Fi

qb. Analogously, for a generic jth R realiza-
tion, we may write R j

Ba�R j
Bq+R j

qa. The same symbols with
no specified subscripts will be used to indicate a generic
realization or a collection of realizations. Finally, we define
the free energy difference between the states A and B as
�FAB=FB−FA.

B. Background

Given these two collections of nonequilibrium realiza-
tions, one may recover �FAB following the ML method by
Shirts et al. �10�. Such method is based on the maximization
of the overall likelihood of obtaining the series of measure-
ments �specifically the work done on the system during the F
and R realizations� using the free energy difference as varia-
tional parameter. In our case, the likelihood L of obtaining
the given work measurements can be expressed as the joint
probability of obtaining the forward measurements at the
specified work values W�F1

Ab�, W�F2
Ab� , . . . ,W�FnF

Ab�, times
the joint probability of obtaining the reverse measurements

at the specified work values W�R1
Ba�, W�R2

Ba� , . . . ,W�RnR

Ba�:

L��FAB� = �
i=1

nF

P�F�W�Fi
Ab���

j=1

nR

P�R�W�R j
Ba�� , �1�

where W�Fi
Ab� and W�R j

Ba� are the work performed on the
system during the Fi

Ab and R j
Ba realizations. The best esti-

mate of the free energy difference �FAB is the value that
maximizes L��FAB�, or equivalently its log function:

� ln L��FAB�
��FAB

= �
i=1

nF 1

1 +
nF

nR
e��W�Fi

Ab�−�FAB�

− �
j=1

nR 1

1 +
nR

nF
e��W�Rj

Ba�+�FAB�
= 0, �2�

where �= �kBT�−1, kB being the Boltzmann constant and T
the temperature. A derivation of the above equation can be
found in Ref. �10�. We point out that Eq. �2� has been derived
starting from the Crooks nonequilibrium work theorem
�9,16�. This implies that the time schedules of the F and R
realizations must be related by time reversal symmetry and
that the initial microstates of the realizations must be
sampled from equilibrium distributions. Note also that Eq.
�2� is exactly equivalent to the Bennett acceptance ratio
method, as can be seen by comparison to Eqs. 12�a� and
12�b� of Ref. �11�.

C. Central result

Suppose we want to determine the free energy difference
�FAQ between the states A and Q using the F and R realiza-
tions introduced above. We recall that Q is an intermediate
thermodynamic state between A and B, in the sense that it is
characterized by a reaction coordinate, �Q, which is taken
arbitrarily from the path connecting �A to �B, or viceversa
�see Fig. 1�. As explained above, this free energy difference
cannot be determined simply exploiting our collections of F
and R realizations into Eq. �2�, because the segments of the R
realizations generally indicated as Rqa do not start from equi-
librium microstates of the state Q. However, had the R real-
izations been started from equilibrium microstates of Q, i.e.,
suppose that the RQa realizations are available in the place of
the Rqa ones, then we could apply Eq. �2� for the calculation
of �FAQ. In the resulting equation, which is equivalent to Eq.
�2� with Fi

Ab, R j
Ba, and �FAB replaced by Fi

Aq, R j
Qa, and

�FAQ, respectively, the second sum can be rearranged as
follows:

�
i=1

nF 1

1 +
nF

nR
e��W�Fi

Aq�−�FAQ�
− 	

−�

+� nR
��W�RQa� − W��

1 +
nR

nF
e��W+�FAQ�

dW = 0,

�3�

where � is the Dirac delta function and 
��W�RQa�−W�� is a
shorthand for nR

−1� j=1
nR ��W�R j

Qa�−W�. We stress again that the
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FIG. 1. Schematic representation of forward and reverse realiza-
tions with the notation used in the text.
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initial microstates of the RQa realizations are assumed
to be sampled from equilibrium. Of course, since we are
dealing with nonequilibrium RBa realizations, work measure-
ments W�RQa� are unavailable, at least directly. Thus the
basic problem here is to derive the unknown quantity

��W�RQa�−W�� using somehow the overall physical infor-
mation contained into our RBa realizations.

To this aim we take advantage of a relation due to Crooks
�16� that establishes a correlation between a function of the
microstate of the system determined along forward and re-
verse realizations and the dissipated work done on the sys-
tem during either the forward or the reverse realizations. In
particular, setting f�x� to be a function of the final microstate
x of a forward realization and f�x̂� to be the same function of
the initial microstate x̂ of a reverse realization, the following
relation holds:


f�x̂��R = 
f�x�e−�Wd�F, �4�

where Wd is the work dissipated during the F realization. The
subscripts F and R indicate that the ensemble averages are
calculated on collections of forward and reverse realizations,
respectively. Therefore, since the average 
f�x̂��R is com-
puted on the initial �equilibrium� ensemble of the reverse
process, the subsequent dynamics of the system is irrelevant
and the average equals an equilibrium average of the func-
tion f�x̂�. In applying Eq. �4� to our case, we consider the
RBq realizations �see Fig. 1� as the forward ones. This im-
plies that the left side of Eq. �4� refers to an ensemble aver-
age of the equilibrium state Q. Moreover, for a given mi-
crostate of the system xi, corresponding to the final
microstate of the Ri

Bq realization, we set

f�xi� = ��W�Ri
qa� − W� , �5�

where W is an arbitrary real number and Ri
qa is a segment of

the Ri
Ba realization. We remark that, given a deterministic

dynamical system and given a time schedule for evolving the
reaction coordinate, the quantity ��W�Ri

qa�−W� is a single
value function of the microstate xi. With this provision, the
general Eq. �4� takes the following specific form


��W�RQa� − W�� = 
��W�Rqa� − W�e−�Wd�RBq�� , �6�

where Wd�RBq� is the work dissipated in the RBq realizations.
Since �FBQ is unknown, Wd�RBq� cannot be determined.
However, upon division of Eq. �6� by the equality �16�

exp�−�Wd�RBq���=1, and using the definition Wd�Ri

Bq�
=W�Ri

Bq�−�FBQ, we obtain


��W�RQa� − W�� =

��W�Rqa� − W�e−�W�RBq��


e−�W�RBq��
. �7�

This equation states that the distribution of the work W�RQa�
done on the system in a collection of nonequilibrium realiza-
tions switching the reaction coordinate from �Q to �A and
starting from equilibrium microstates can be recovered from
a set of nonequilibrium realizations switching the reaction
coordinate between the same values, but starting from non-
equilibrium microstates �realizations Rqa in Eq. �7��. The
contribution of each work measurement W�Rqa� to the

distribution must however be weighted by a factor
depending on the work done on the system to produce
the initial nonequilibrium microstate �the factor
exp�−�W�Ri

Bq�� / 
exp�−�W�RBq��� in Eq. �7��. We point out
that, while Eq. �4� is valid for both stochastic and determin-
istic systems �16�, the derivation of Eq. �7� provided here
holds only for deterministic systems �we have indeed intro-
duced this assumption when defining f�xi�; see Eq. �5��.
However, it has been numerically proved �18� that the rela-
tions derived in the present article �specifically Eq. �16�� can
also be applied successfully to Brownian dynamical systems.
Finally, substituting Eq. �7� into Eq. �3� and performing the
integral, we get

�
i=1

nF 1

1 +
nF

nR
e��W�Fi

Aq�−�FAQ�
− 
e−�W�RBq��−1

� �
j=1

nR e−�W�Rj
Bq�

1 +
nR

nF
e��W�Rj

qa�+�FAQ�
= 0. �8�

The above equation is the central result of the present article.
By means of a recursive procedure, Eq. �8� allows us to
determine the free energy difference between the state A and
an arbitrary state Q, and hence between any pair of states
along the reaction path. We note that in Eq. �8� the physical
information of both F and R realizations is used, albeit not at
the maximum extent. In fact, while the R realizations are
fully used �note that R j

Bq+R j
qa�R j

Ba�, for the F realizations
only the segments FAq are actually employed.

An analogous and symmetrical approach aimed at using
the physical information contained into the full FAb realiza-
tions and into the segment RBq of the RBa realizations allows
us to recover a ML estimator to determine �FQB:


e−�W�FAq��−1�
i=1

nF e−�W�Fi
Aq�

1 +
nF

nR
e��W�Fi

qb�−�FQB�

− �
j=1

nR 1

1 +
nR

nF
e��W�Rj

Bq�+�FQB�
= 0. �9�

As for Eq. �2�, the left sides of Eqs. �8� and �9� are strictly
increasing functions of �FAQ and �FQB, respectively. The
limits of the left side of Eq. �8� for �FAQ→� and for
�FAQ→−� are nF and −nR, respectively. The analogous lim-
its of the left side of Eq. �9�, i.e., �FQB→� and
�FQB→−�, give the same values. The monotonic behavior
of the left sides of Eqs. �8� and �9� and their limit values
guarantee the existence of one unique root. Such root corre-
sponds to the value of the free energy difference that fur-
nishes the ML estimate of the measured or calculated data. It
is finally straightforward to prove that both equations have
Eq. �2� as special case �set the equivalence between the states
Q and B in Eq. �8� and between the states Q and A in Eq.
�9��.
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As stated above, the overall physical information avail-
able from the F and R realizations is not exploited either in
Eq. �8� or in Eq. �9�. To tackle this fact one can however
apply a ML argument to the two collections of measurements
implied by Eqs. �8� and �9�. We first notice that Eq. �8� has
been derived maximizing the log function of the likelihood
L��FAQ�

ln L��FAQ� = �
i=1

nF

ln P�F�W�Fi
Aq�� + �

j=1

nR

ln P��R�W�R j
Qa�� .

�10�

Note that in Eq. �10� the probability in the second sum is
primed. This means that such term must be treated with the
usual reweighting procedure �see derivation of Eq. �8�� be-
cause the realizations RQa are unavailable �since they must
start from equilibrium microstates�. The first sum of Eq. �10�
can instead be treated in the standard fashion, because the
work measurements W�FAq� are available from the full F
realizations. Analogously, Eq. �9� has been obtained by
maximizing the log function of L��FQB�

ln L��FQB� = �
i=1

nF

ln P��F�W�Fi
Qb�� + �

j=1

nR

ln P�R�W�R j
Bq�� ,

�11�

where the probability in the first sum is primed for the same
reasons discussed above. From a formal standpoint, Eqs. �10�
and �11� deal with two independent collections of realiza-
tions, i.e., FAq and Rqa the former equation and Fqb and RBq

the latter one. Therefore, noting that

�FQB = �FAB − �FAQ �12�

and assuming that the free energy difference �FAB is known
�using, e.g., the ML estimator of Eq. �2��, we may express
the overall likelihood of obtaining the given work measure-
ments in both collections as the product L��FAQ�L��FQB�,
i.e., a function of �FAQ alone �or alternatively, �FQB alone�.
Maximization of the log function of such a product with
respect to �FAQ leads to the following equation �the same
estimator would be obtained maximizing the log function of
L��FAQ�L��FQB� with respect to �FQB�

� ln L��FAQ�
��FAQ

+
� ln L��FQB�

��FAQ
= 0. �13�

Since �FAB is known, and hence independent on both �FAQ
and �FQB, Eq. �12� sets the condition

��FQB

��FAQ
= − 1. �14�

Using Eq. �14� into Eq. �13�, leads to the relation

� ln L��FAQ�
��FAQ

−
� ln L��FQB�

��FQB
= 0. �15�

The left and right derivatives of Eq. �15� are exactly the left
sides of Eqs. �8� and �9�, respectively. Therefore, upon sub-

stitution of Eqs. �8� and �9� into Eq. �15� and using Eq. �12�
in the resulting equation, we obtain

�
i=1

nF 1

1 +
nF

nR
e��W�Fi

Aq�−�FAQ�

− 
e−�W�RBq��−1�
j=1

nR e−�W�Rj
Bq�

1 +
nR

nF
e��W�Rj

qa�+�FAQ�

− 
e−�W�FAq��−1�
k=1

nF e−�W�Fk
Aq�

1 +
nF

nR
e��W�Fk

qb�−�FAB+�FAQ�

+ �
l=1

nR 1

1 +
nR

nF
e��W�Rl

Bq�+�FAB−�FAQ�
= 0. �16�

Remember that in the equation above, the quantity �FAB
must be predetermined via Eq. �2�. The left side of Eq. �16�
is an increasing function in �FAQ and the limits for
�FAQ→� and for �FAQ→−� have opposite signs, being
nR+nF and −nR−nF, respectively. Again, this guarantees the
existence of one unique root in Eq. �16�.

If, on the one hand, the ML estimator of Eq. �16� has the
advantage of using the full physical information contained
into our sets of work measurements, on the other hand, it
contains the free energy difference �FAB that should be de-
termined independently. This implies that the error on the
estimate of �FAB sums to that on �FAQ. The other derived
ML estimators, i.e., Eqs. �8� and �9�, do not suffer from such
a shortcoming. The disadvantage is however that these ML
estimators do not employ completely the physical informa-
tion of the measurements in our hands.

III. NUMERICAL TESTS: TECHNICAL DETAILS

The ML estimators of Eqs. �8�, �9�, and �16� have been
applied to compute the PMF for the unfolding process of the
�-helix form of an alanine decapeptide �A10� at finite tem-
perature. Following Ref. �17�, we have used steered MD
simulations as a device for the numerical experiments, taking
the end-to-end distance of A10 as reaction coordinate �. In
particular � corresponds to the distance between the N atom
of the N-terminus amino acid �constrained to a fixed posi-
tion� and the N atom of the C-terminus amino acid �con-
strained to move along a fixed direction�. The values of � in
the folded and unfolded states of A10 are assumed �17� to be
15.5 and 31.5 Å, respectively. Moreover, we have arbitrarily
assumed the unfolding process of A10 as the forward �F� one.
In the context of our notation �see Sec. II A�, we therefore set
�A=15.5 Å and �B=31.5 Å. It should be noted that, in gen-
eral, the end-to-end distance does not determine uniquely the
configurational state of polypeptides. However, in the spe-
cific case of A10, the equilibrium distribution at �=�A corre-
sponds to an ensemble of microstates tightly peaked around
the �-helix form, as for this end-to-end distance alternative
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structures are virtually impossible. The same holds true for
the state corresponding to �=�B, which basically represents
an almost fully elongated configuration of the peptide. This
implies that these two thermodynamic states can be effec-
tively sampled using relatively few microstates obtained
from equilibrium MD simulations at the given � values. The
starting microstates for the F and R realizations have been
randomly picked �every 5 ps� from two standard MD simu-
lations constraining � to �A and to �B, respectively, by means
of a stiff harmonic potential �force constant equal to
800 kcal mol−1 Å−2�. In both equilibrium MD simulations
and in the subsequent steered MD simulations, constant tem-
perature �300 K� has been enforced using a Nosé-Hoover
thermostat �19,20�. Force field has been taken from Ref.
�21�. Given the limited size of the sample, no cutoff radius
has been imposed to the atomic pair interactions and no pe-
riodic boundary conditions have been applied.

For each type of process, F and R, we have generated 104

realizations guiding � from �A to �B �F realizations� or from
�B to �A �R realizations� using a harmonic potential depen-
dent on time:

V�t� =
k

2
�� − 	�t��2, �17�

where the force constant k is reported above. The time de-
pendence of the control parameter 	�t� determines the pull-
ing speed of the nonequilibrium realizations and in
general their time schedule. In our case, 	�t� varies linearly

with the time, i.e., 	�t�=�A+ 	̇t for the F realizations and

	�t�=�B− 	̇t for the R ones. The work measurement at a
given instant t of a realization is calculated integrating the
partial derivative of V�t� with respect to time from the time
zero to the time t. Six series of R /F work measurements

differing only in the pulling speed 	̇ have been performed

�	̇=80, 160, 320, 533, 800, and 1600 Å ns−1�.

IV. NUMERICAL TESTS: RESULTS

In Fig. 2 we report a comparison between the PMF cal-
culated using the ML estimators of Eqs. �8�, �9�, and �16� and
the exact PMF recovered through thermodynamic integration
�1�. To show the correctness of the estimators numerically, in
the figure we have drawn the PMF profiles obtained using
the slowest pulling speed, i.e., 80 Å ns−1. It is noticeable that
all ML estimators provide an almost perfect agreement with
thermodynamic integration. The relevance of this result is
enforced to the light of early PMF calculations �13� on the
unfolding process of A10. Free energy estimators, such as
Jarzynski equality and second order cumulant expansion
�13�, using only a slightly faster pulling speed �100 Å ns−1�,
give a much worse accuracy than the methods proposed here.
This can be more strictly verified comparing Fig. 5�a� of Ref.
�13� with the PMF estimates determined using Eqs. �8�, �9�,
and �16� with pulling speed of 160 Å ns−1 �see Ref. �22��. A
more comprehensive view of the performances of the ML
estimators of Eqs. �8�, �9�, and �16� is gained by the root
mean square deviation of the estimated PMF curves from the
exact one:


 = � 1

N
�
i=1

N

�FML��i� − FTI��i��21/2

, �18�

where FML��i� is the value of the PMF at �=�i calculated
using one of our ML estimators and FTI��i� is the corre-
sponding exact value determined by thermodynamic integra-
tion. In our calculations, the reaction coordinate is defined in
steps of 0.4 Å, i.e., �1��A=15.5, �2=15.9, �3=20.3, . . . ,�N
��B=31.5 Å, where N=41. The value of 
 for the various
approaches has been calculated after determining the addi-
tive constant of FML��� via a least squares fitting to FTI���.
The value of 
 obtained from the considered ML estimators
for different pulling speeds is reported in Fig. 3. The wors-
ening of the accuracy of the ML estimators by increasing the
pulling speed of the realizations is expected on the basis of
statistical reasons. The remarkable result is that all ML esti-
mators have comparable accuracy independing on the pulling
speed. Moreover, Eq. �9� gives the best accuracy for all pull-
ing speeds except for 533 Å ns−1, while Eq. �16� gives sys-
tematically an accuracy which is in between those obtained

FIG. 2. PMF of A10 as a function of the reaction coordinate �
�end-to-end distance�. Squares: Eq. �8�; triangles: Eq. �9�; circles:
Eq. �16�; solid lines: thermodynamic integration �TI�. The PMF
profiles from ML estimators are calculated using F and R realiza-
tions performed with pulling speed of 80 Å ns−1. For the sake of
clarity the curves are upshifted.
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FIG. 3. 
 value �Eq. �18�� as a function of the pulling speed for
various ML estimators. Squares: Eq. �8�; triangles: Eq. �9�; circles:
Eq. �16�. The lines are drawn as a guide for eyes.
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from Eqs. �8� and �9�. These facts suggest that the formal
asymmetry of the ML estimators of Eqs. �8� and �9� �see
discussion in Sec. II C� in comparison to the formal symme-
try of Eq. �16� may be relevant in the choice of the most
accurate approach. In fact, it is known �15� that, for a given
reaction path of a system, the use of a set of forward realiza-
tions in the framework of exponential averages for determin-
ing the free energy difference between two states may give
different variance and bias with respect to the same estimate
performed using the reverse realizations. We do not exclude
that this fact might be related to our observations of Fig. 3
discussed above. In such a case the ML estimator of Eq. �16�
would be the more appropriate without prior knowledge on
the system.

V. CONCLUSIONS

We have presented a method for determining the PMF
along a given reaction coordinate which is based on ML

methods and path-ensemble averages in systems driven far
from equilibrium. The method has been applied to computer
experiments on the unfolding process of the �-helix form of
an alanine decapeptide using nonequilibrium realizations
with various pulling speeds. The estimated PMF is in fair
agreement with thermodynamic integration. A formula for
the variance of PMF estimates generated using this method is
still unavailable, though its derivation appears straightfor-
ward following the guidelines reported in the present article
and in the work by Shirts et al. �10�. We plan to report on
this issue in a forthcoming contribution.

ACKNOWLEDGMENTS

We thank David Minh �Laboratory of Chemical Physics,
NIDDK, National Institutes of Health, Bethesda, Maryland,
USA� for providing insights about the generality of the ML
estimators and for suggestions on how to improve some parts
of the manuscript. This work was supported by the European
Union �Grant No. RII3-CT-2003-506350�.

�1� J. G. Kirkwood, J. Chem. Phys. 3, 300 �1935�.
�2� R. W. Zwanzig, J. Chem. Phys. 22, 1420 �1954�.
�3� G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187

�1977�.
�4� E. Darve and A. Pohorille, J. Chem. Phys. 115, 9169 �2001�.
�5� A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99,

12562 �2002�.
�6� D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.

Lett. 71, 2401 �1993�.
�7� G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694

�1995�.
�8� C. Jarzynski, Phys. Rev. Lett. 78, 2690 �1997�.
�9� G. E. Crooks, J. Stat. Phys. 90, 1481 �1998�.

�10� M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande, Phys. Rev.
Lett. 91, 140601 �2003�.

�11� C. H. Bennett, J. Comput. Phys. 22, 245 �1976�.
�12� H. Oberhofer, C. Dellago, and P. L. Giessler, J. Phys. Chem. B

109, 6902 �2005�.
�13� S. Park and K. Schulten, J. Chem. Phys. 120, 5946 �2004�.
�14� G. Hummer, J. Chem. Phys. 114, 7330 �2001�.
�15� M. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 144107

�2005�.
�16� G. E. Crooks, Phys. Rev. E 61, 2361 �2000�.
�17� P. Procacci, S. Marsili, A. Barducci, G. F. Signorini, and R.

Chelli, J. Chem. Phys. 125, 164101 �2006�.
�18� David Minh �private communication�.
�19� W. G. Hoover, Phys. Rev. A 31, 1695 �1985�.
�20� W. G. Hoover, Phys. Rev. A 34, 2499 �1986�.
�21� A. Mackerell et al., J. Phys. Chem. B 102, 3586 �1998�.
�22� See EPAPS Document No. E-PLEEE8-77-169802 for addi-

tional potential of mean force curves, calculated using a pull-
ing speed of 160 Å /ns. For more information on EPAPS, see
http://www.aip.org/pubservs/epaps.html.

CHELLI, MARSILI, AND PROCACCI PHYSICAL REVIEW E 77, 031104 �2008�

031104-6


